

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 171 (2003) 455

SOLID STATE CHEMISTRY

JOURNAL OF

http://elsevier.com/locate/jssc

Erratum

Erratum to "Variable dimensionality and new uranium oxide topologies in the alkaline-earth metal uranyl selenites $AE[(UO_2)(SeO_3)_2]$ (AE = Ca, Ba) and $Sr[(UO_2)(SeO_3)_2] \cdot 2H_2O$ " [J. Solid State Chem. 168 (2002) 358–366] $\stackrel{\text{tr}}{\Rightarrow}$

Philip M. Almond, Shane M. Peper, Eric Bakker, and Thomas E. Albrecht-Schmitt^{*}

Department of Chemistry, 179, Chemistry Building, Auburn University, Auburn, AL 36849, USA

This paper was inadvertently published in the special issue on molecular metals [Vol. 168, Number 2 (2002)]. It should have appeared in the special issue Proceedings of the 23rd Rare Earth Research Conference [Vol. 171, Numbers 1 and 2 (2003)]. The publishers regrets the error. For the reader's convenience the abstract of the paper appears below:

Three new alkaline-earth metal uranyl selenites, $Ca[(UO_2)(SeO_3)_2]$ (1), $Sr[(UO_2)$ $(SeO_3)_2$ · 2H₂O (2), and Ba[(UO₂)(SeO₃)₂] (3), have been prepared from the reactions of CaCO₃ and Ca(OH)₂, SrCl₂ and Sr(OH)₂, or BaCl₂ and Ba(OH)₂ with UO₃ and SeO₂ under mild hydrothermal conditions. Single-crystal X-ray diffraction experiments reveal that the structures of 1-3 differ in both connectivity and dimensionality even though all contain the same fundamental building unit, namely $[UO_2(SeO_3)_4]$. This polyhedron consists of a linear uranyl unit that is bound by one chelating and three bridging selenite anions creating a pentagonal bipyramidal environment around the U(VI) center. The crystal structure of 1 contains one-dimensional ribbons where the edges are terminated by monodentate selenite anions. The interiors of the ribbons are constructed from edge-sharing pentagonal bipyramidal UO_7 units. The structure of **2** is also one-dimensional; however, here there are chains of edge-sharing pentagonal bipyramidal UO₇ dimers that are connected by bridging selenite anions. $Ba[(UO_2)(SeO_3)_2]$ (3) is two-dimensional, and the highly ruffled anionic sheets present in this structure are formed from both bridging and chelating/ bridging selenite anions bound to uranyl moieties. The anionic substructures in 1-3 are separated by Ca²⁺, Sr²⁺, or Ba²⁺ cations. Crystallographic data (193 K, MoK α , $\lambda = 0.71073$): 1, triclinic, space group $P\bar{I}$, a = 5.5502(6) Å, b = 6.6415(7) Å, c = 11.013(1) Å, $\alpha = 104.055(2)^{\circ}$, $\beta = 93.342(2)^{\circ}$, $\gamma = 110.589(2)^{\circ}$, Z = 2, $R(F) = 10.589(2)^{\circ}$ 4.56% for 100 parameters with 1530 reflections with $I > 2\sigma(I)$; 2, triclinic, space group $P\bar{1}$, a = 7.0545(5)Å, b = 7.4656(5)Å, c = 10.0484(6)Å, $\alpha = 106.995(1)^{\circ}$, $\beta = 108.028(1)^{\circ}$, $\gamma = 98.875(1)^{\circ}$, Z = 2, R(F) = 2.43% for 128 parameters with 2187 reflections with $I > 2\sigma(I)$; 3, monoclinic, space group $P2_1/c, a = 7.3067(6)$ Å, b = 8.1239(7) Å, c = 13.651(1) Å, $\beta = 100.375(2)^{\circ}$, Z = 4, R(F) = 4.31% for 105 parameters with 1824 reflections with $I > 2\sigma(I)$.

^{*}DOI of original article: 10.1006/jssc.2002.9673. *Corresponding author. Fax: 334-844-6959.

E-mail address: albreth@auburn.edu (T.E. Albrecht-Schmitt).